m.lev-yashin-1st-klub-union-dynamo-balon-1963-fc-s8.prestasi.web.id Layanan Informasi 17 Jam
Telp/Fax : 021-8762002, 8762003, 8762004, 87912360
HP/SMS : 081 1110 4824 27, 0812 9526 2009, 08523 1234 000
WhatsApp : 0817 0816 486, 0812 9526 2009
email : _Hubungi Kami__ silahkan klik
Chatting dengan Staf :
ggkarir.com
ggiklan.com
Pilih Bahasa :   ID   EN   Permintaan Katalog / Brosur (GRATIS via POS)   Ensiklopedia Lowongan Kerja Iklan

   
Cari  
    Teknik Informatika

    Sebelumnya  (Watt) (Wave Accounting)  Berikutnya    

Watts and Strogatz model

Watts-Strogatz small-world model
Watts-Strogatz small-world model generated by igraph and visualized by Cytoscape 2.5. 100 nodes.

The Watts-Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering. It was proposed by Duncan J. Watts and Steven Strogatz in their joint 1998 Nature paper.[1] The model also became known as the (Watts) beta model after Watts used \beta to formulate it in his popular science book Six Degrees.

Contents

Rationale for the model

The formal study of random graphs dates back to the work of Paul Erdős and Alfréd Rényi.[2] The graphs they considered, now known as the classical or Erdős–Rényi (ER) graphs, offer a simple and powerful model with many applications.

However the ER graphs do not have two important properties observed in many real-world networks:

  1. They do not generate local clustering and triadic closures. Instead because they have a constant, random, and independent probability of two nodes being connected, ER graphs have a low clustering coefficient.
  2. They do not account for the formation of hubs. Formally, the degree distribution of ER graphs converges to a Poisson distribution, rather than a power law observed in many real-world, scale-free networks.

The Watts and Strogatz model was designed as the simplest possible model that addresses the first of the two limitations. It accounts for clustering while retaining the short average path lengths of the ER model. It does so by interpolating between an ER graph and a regular ring lattice. Consequently, the model is able to at least partially explain the "small-world" phenomena in a variety of networks, such as the power grid, neural network of C. elegans, and a network of movie actors.

Algorithm

Watts-Strogatz graph

Given the desired number of nodes N, the mean degree K (assumed to be an even integer), and a special parameter \beta, satisfying 0 \le \beta \le 1 and N\gg K \gg \ln(N)\gg 1, the model constructs an undirected graph with N nodes and \frac{NK}{2} edges in the following way:

  1. Construct a regular ring lattice, a graph with N nodes each connected to K neighbors, K/2 on each side. That is, if the nodes are labeled n_0 ... n_{N-1}, there is an edge (n_i, n_j) if and only if  0 < |i - j| \leq \frac{K}{2}.
  2. For every node n_i=n_0,\dots, n_{N-1} take every edge (n_i, n_j) with i < j, and rewire it with probability \beta. Rewiring is done by replacing (n_i, n_j) with (n_i, n_k) where k is chosen with uniform probability from all possible values that avoid self-loops (k \ne i) and link duplication (there is no edge (n_i, n_{k'}) with k' = k at this point in the algorithm).

Properties

The underlying lattice structure of the model produces a locally clustered network, and the random links dramatically reduce the average path lengths. The algorithm introduces about \beta\frac{NK}{2} non-lattice edges. Varying \beta makes it possible to interpolate between a regular lattice (\beta=0) and a random graph (\beta=1) approaching the Erdős–Rényi random graph G(n, p) with n=N and p = \frac{NK}{2{N \choose 2}}.

The three properties of interest are the average path length, the clustering coefficient, and the degree distribution.

Average path length

For a ring lattice the average path length is l(0)=N/2K\gg 1 and scales linearly with the system size. In the limiting case of \beta \rightarrow 1 the graph converges to a classical random graph with l(1)=\frac{\ln{N}}{\ln{K}}. However, in the intermediate region 0<\beta<1 the average path length falls very rapidly with increasing \beta, quickly approaching its limiting value.

Clustering coefficient

For the ring lattice the clustering coefficient[3] C(0)=\frac{3(K-2)}{4(K-1)}, and so tends to 3/4 as K grows, independently of the system size.[4] In the limiting case of \beta \rightarrow 1 the clustering coefficient attains the value for classical random graphs, C(1)=K/N and is thus inversely proportional to the system size. In the intermediate region the clustering coefficient remains quite close to its value for the regular lattice, and only falls at relatively high \beta. This results in a region where the average path length falls rapidly, but the clustering coefficient does not, explaining the "small-world" phenomenon.

If we use the Barrat and Weigt[4] measure for clustering C'(\beta) defined as the fraction between the average number of edges between the neighbors of a node and the average number of possible edges between these neighbors, or, alternatively,
C^'(\beta)\equiv\frac{3\times \mbox{number of triangles}}{\mbox{number of connected triples}}
then we get  C'(\beta)\sim C(0)\left(1-\beta\right)^3.

Degree distribution

The degree distribution in the case of the ring lattice is just a Dirac delta function centered at K. In the limiting case of \beta \rightarrow 1 it is Poisson distribution, as with classical graphs. The degree distribution for 0<\beta<1 can be written as,[4]

P(k) = \sum_{n=0}^{f\left(k,K\right)} C^n_{K/2} \left(1-\beta\right)^{n} \beta^{K/2-n} \frac{(\beta K/2)^{k-K/2-n}}{\left(k-K/2-n\right)!} e^{-\beta K/2}

where k_i is the number of edges that the i^{th} node has or its degree. Here k\geq K/2, and f(k,K)=\min(k-K/2,K/2). The shape of the degree distribution is similar to that of a random graph and has a pronounced peak at k=K and decays exponentially for large |k-K|. The topology of the network is relatively homogeneous, and all nodes have more or less the same degree.

Limitations

The major limitation of the model is that it produces an unrealistic degree distribution. In contrast, real networks are often scale-free networks inhomogeneous in degree, having hubs and a scale-free degree distribution. Such networks are better described in that respect by the preferential attachment family of models, such as the Barabási–Albert (BA) model. (On the other hand, the Barabási–Albert model fails to produce the high levels of clustering seen in real networks, a shortcoming not shared by the Watts and Strogatz model. Thus, neither the Watts and Strogatz model nor the Barabási–Albert model should be viewed as fully realistic.)

The Watts and Strogatz model also implies a fixed number of nodes and thus cannot be used to model network growth.

See also

References

  1. ^ Watts, D.J.; Strogatz, S.H. (1998). "Collective dynamics of 'small-world' networks.". Nature 393 (6684): 409–10. Bibcode:1998Natur.393..440W. doi:10.1038/30918. PMID 9623998. Accessdate used without URL
  2. ^ Erdos, P. (1960). "Publications Mathematicae 6, 290 (1959); P. Erdos, A. Renyi". Publ. Math. Inst. Hung. Acad. Sci 5: 17. 
  3. ^ Albert, R., Barabási, A.-L. (2002). "Statistical mechanics of complex networks.". Reviews of Modern Physics 74 (1): 47–97. doi:10.1103/RevModPhys.74.47. Retrieved 2008-02-25. 
  4. ^ a b c Barrat, A.; Weigt, M. (2000). "On the properties of small-world network models" (PDF). The European Physical Journal B-Condensed Matter 13 (3): 547–560. doi:10.1007/s100510050067. Retrieved 2008-02-26. 
    Sebelumnya  (Watt) (Wave Accounting)  Berikutnya    


Kelas MalamKelas MalamEnsiklopedia DuniaGilland GroupManual / TutorialJaringan EnsiklopediaJaringan WebsiteBudayaAgamaJavaScriptIlmu KomputerMotivasiDialog Agama Khonghucu



Tags: Watts and Strogatz model, Teknik Informatika, 2272, Watts and Strogatz model Network science Theory · History Graph · Complex network · Contagion Small world · Scale free · Community structure · Percolation · Evolution · Controllability · Topology · Graph drawing · Social capital · Link analysis · Optimization Reciprocity · Closure · Homophily Transitivity · Preferential attachment Balance · Network effect · Influence Types of Ne, Watts and Strogatz model, Bahasa Indonesia, Contoh Instruksi, Tutorial, Referensi, Buku, Petunjuk m.lev yashin 1st klub union dynamo balon 1963 fc s8, prestasi.web.id
 Daftar Online    Cari Karir    Seluruh Perdebatan    Kuliah Blended di 112 PTS Terbaik

 Alqur'an Online    Buku Tutorial    Tips & Trik Tes Psikologi    Kepustakaan Bebas    Berbagai Info    Permintaan Beasiswa    Download Brosur    Kuliah Tanpa Biaya    Program Kuliah Extension    Program Pascasarjana (Magister, S2)    Kelas Reguler    Program Perkuliahan Paralel    Try Out Online Gratis    Waktu Sholat
Link Khusus ke
PTS Terakreditasi & Terkemuka
Penyelenggara Program S1, D3, S2

(silakan klik di bawah ini)
STMIKMJ - STMIKMJ Jakarta
IGI - STIE IGI Jakarta
STTM Cileungsi - STIE Cileungsi
STIE WP - STIE Widya Persada
UPRI - UPRI Makassar
STEI - STEI Yogyakarta
STIE - Hidayatullah Depok
STEBI - Bina Essa
P2KKMPoliteknik Aisyiyah

P2KKMUMPTB Lampung
P2KKMSTIT Al-Hikmah Lampung

P2KKMUniv.Amir Hamzah
P2KKMUSM Indonesia
P2KKMUniv. Al-Azhar Medan
P2KKMUniversitas Deli Sumatera

P2KKMUniv. Muh. Palangkaraya

P2KKMSTIT Nur Ahadiyah

P2KKMUniv. Nahd. Ulama Kalbar

P2KKMUniv. Nahd. Ulama Kaltim

Langsa -- Aceh :
P2KKMUSCND Langsa

P2KKMUniv. Ubudiyah Indonesia

P2KKMSTIT Hidayatullah
P2KKMIAI Abdullah Said

P2KKMUniv. Pejuang Rep. Ind.
P2KKMUniv. Teknologi Sulawesi
P2KKMUniv. Cokroaminoto Makassar
P2KKMITeKes Tri Tunas Nasional

P2KKMUniv. Patria Artha

P2KKMUniv. Nusantara, Manado
P2KKMSTIE Pioneer Manado
P2KKMUniversitas Parna Raya Manado

P2KKMUniversitas Boyolali

P2KKMUniversitas Duta Bangsa
P2KKMPoliteknik Harapan Bangsa Surakarta
P2KKMPoliteknik Santo Paulus Surakarta

P2KKMUNIBABWI

P2KKMUniv. Muhammadiyah Smrg
P2KKMUNDARIS Semarang
P2KKMUNAKI Semarang
P2KKMUPGRIS Semarang
P2KKMUniv. IVET Semarang
P2KKMSTIE Cendekia

P2KKMUNUGHA Cilacap

P2KKMUniv. Muhammadiyah Sby
P2KKMSTIE Pemuda Sby
P2KKMIKIP Widya Darma Sby
P2KKMSTIE Widya Darma Sby
P2KKMSTIE ABI Surabaya
P2KKMUNUSA Surabaya
P2KKMUniv. Widya Kartika
P2KKMSTAI Al Akbar Surabaya

P2KKMUniv. Kahuripan Kediri

P2KKMSTAI Muhammadiyah Tulungagung

P2KKMSTIKI Malang
P2KKMSTIE INDOCAKTI
P2KKMSTIE Al Rifa'ie

P2KKMSTIA Bayuangga
P2KKMSTAI Muhammadiyah Probolinggo

P2KKMUniversitas Moch. Sroedji

P2KKMSTEI JOGJA - STEI Yogyakarta
P2KKMSTIE Mitra Indonesia
P2KKMSTiPsi
P2KKMSTAI Terpadu Yogyakarta
P2KKMUniversitas Mahakarya Asia

P2KKMSTIE Hidayatullah
P2KKMSTIE - GICI A
P2KKMSTIE - GICI A


P2KKMSTMIK-MJ - STMIK Muh. Jkt.
P2KKMUNKRIS - Krisnadwipayana
P2KKMSTT Bina Tunggal - Bekasi
P2KKMSTT Duta Bangsa - Bekasi
P2KKMSTIE - GICI C
P2KKMSTEBI Global Mulia
P2KKMUniversitas Pelita Bangsa
P2KKMUniversitas Indonesia Mandiri
P2KKMPoliteknik Bhakti Kartini

P2KKMSTMIK-STIKOM Bali
P2KKMPOLNAS Denpasar
P2KKMUniversitas Bali Dwipa
P2KKMPoltek Ganesha Guru Singaraja

P2KKMSTIE Ganesha
P2KKMSTT Yuppentek
P2KKMITB Ahmad Dahlan
P2KKMUniv. Tangerang Raya
P2KKMSTIA Maulana Yusuf
P2KKMSTIH Gunung Jati
P2KKMSTIE PPI Balaraja

P2KKMUNSUB - Universitas Subang

P2KKMSTIT Al-Hidayah Tasikmalaya

P2KKMSTIE Walisongo
P2KKMSTT Walisongo

P2KKMUniv. Islam Al-Ihya

P2KKMSTT Mandala, Bandung
P2KKMSTT Bandung
P2KKMSTIE Gema Widya Bangsa
P2KKMUniversitas Insan Cendekia Mandiri
P2KKMUniversitas Halim Sanusi
P2KKMUniversitas Persatuan Islam
P2KKMSTEBI Bina Essa

P2KKMSTT Dr. Khez Muttaqien

P2KKMIMWI Sukabumi

P2KKMSTIH Dharma Andigha
P2KKMUniversitas Teknologi Nusnatara

P2KKMSTT Muhammadiyah Cileungsi

P2KKMISTA - Institut ST Al Kamal
P2KKMSTIE IGI - Inter. Golden Inst.
P2KKM Univ. Mpu Tantular B

P2KKMU M J - Univ. Muh. Jkt

P2KKMFISIP UMJ - Univ. Muh. Jkt.
P2KKMFTan UMJ - Agroteknologi
P2KKMSTIE Trianandra Jakarta
P2KKMSTIE - GICI B
P2KKMSTIE Ganesha
P2KKMSTIMAIMMI Jakarta
P2KKMTanri Abeng University

P2KKMUMHT - Univ. MH. Thamrin
P2KKMFE UMHT - FE MH. Thamrin
P2KKMFASILKOM UMHT
P2KKMUNKRIS - Krisnadwipayana
P2KKMITBU - Inst. Tek. Budi Utomo
P2KKMSTIE Trianandra Jakarta
P2KKMSTMIK Muh. Jkt - Matraman
P2KKMSTMIK Muh. Jkt - Ciracas
P2KKMUniv. Mpu Tantular A
P2KKMSTT Sapta Taruna
P2KKMIAI Al-Ghurabaa Jakarta

P2KKMISIF - Institut Studi Islam Fahmina

P2KKMSTEBI Global Mulia

P2KKMSTIKes Sapta Bakti
P2KKMSTAI Miftahul ulum

P2KKMPoltekkes Kerta Cendekia

P2KKMPelita Raya Institute


KPT Konsultan Pendidikan Tinggi

Tujuan Penting
silakan klik di bawah ini
Ilmu Online

1. Universitas Yarsi Pratama - Universitas Yarsi Pratama - Kampus : Jl. Aria Jaya Santika No. 7, Pasir Nangka, Kec. Tigaraksa, Kab. Tangerang, Banten
2. STIE Widya Persada Jakarta - Sekolah Tinggi Ilmu Ekonomi Widya Persada Jakarta - Kampus :Jl. Hj. Tutty Alawiyah No.486, RW.5, Kalibata, Kec. Pancoran, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12740
3. UWIKA Surabaya - Universitas Widya Kartika Surabaya - Kampus UWIKA : Jl. Sutorejo Prima Utara II No.1, Kalisari, Kec. Mulyorejo, Kota Surabaya, Jawa Timur 60112
4. Universitas Wijaya Kusuma Surabaya - Universitas Wijaya Kusuma Surabaya - Kampus : Jl. Dukuh Kupang XXV No.54, Dukuh Kupang, Kec. Dukuhpakis, Surabaya, Jawa Timur 60225
5. Universitas Teknologi Sulawesi Makassar - Universitas Teknologi Sulawesi Makassar - Kampus UTS Makassar : Jl. Talasalapang No.51A, Karunrung, Kec. Rappocini, Kota Makassar, Sulawesi Selatan 90222
6. Universitas Teknologi Nusantara - Universitas Teknologi Nusantara - Kampus UTN : Jl. Kedung Halang Pemda pangkalan II No.66, RT.01/RW.02, Kedunghalang, Kec. Bogor Utara, Kota Bogor, Jawa Barat 16158
sttbanten.web.id  |  stkipbanten.web.id  |  staimutanjungpinang.web.id  |  stit-tarbiyatunnisa.web.id  |  p2k.staimutanjungpinang.ac.id  |  drsoebandi.web.id  |  p2k.stebibama.ac.id  |  p2k.itkpi.ac.id  |  p2k.sayidsabiq.ac.id  |  p2k.nusamandiri.ac.id  |  uyi.web.id